Categorification of perfect matchings

Alastair King, Bath
with I. Çanakçı \& M. Pressland [CKP] and with B.T. Jensen \& X. Su

Hamburg, Jan 2022

What is "categorification" here?

Enriching/explaining combinatorics by representation theory
... for example: replacing cluster algebras by cluster categories
... but not: higher representation theory [Khovanov, Rouqier, ...]
(replacing vector spaces \& linear maps by categories \& functors)
... in this talk: interpreting dimer models and perfect matchings as quivers with faces and their representations

Context: consistent dimer models on a disc

planar bipartite graph G

+ Postnikov conditions
on strands (zig-zag paths)

quiver with faces,
i.e. oriented cycles,
$Q=\left(Q_{0}, Q_{1}, Q_{2}\right)$

Combinatorics: left source labelling of quiver vertices

[Postnikov, Scott] Label each quiver vertex $i \in Q_{0}$ by the sources of the strands for which i is on the left of the strand.

Ex: Labels J_{i} are in $\binom{[n]}{k}=\{k$-subsets of $\{1, \ldots, n\}\}$, for fixed k, the average increment $(\bmod n)$ of the strand permutation π. Here $\pi=(246)(1573)$, with increments $2,2,3,4,2,3,5$.

Hint: Consider the necklace \mathcal{N}_{π} of boundary labels.

Geometry: Grassmannians and positroids

The Grassmannian $\mathrm{Gr}_{k, n}$ of (co)dimension k subspaces of \mathbb{C}^{n} has homogeneous coordinate ring

$$
\mathbb{C}\left[\mathrm{Gr}_{k, n}\right]=\mathbb{C}\left[\mathrm{Mat}_{k, n}\right]^{\mathrm{SL}_{k}}
$$

i.e. SL_{k}-invariant functions of $k \times n$ matrices,
generated by Plücker coordinates (minors) $\Delta_{J}: J \in\binom{[n]}{k}$, satisfying (quadratic) Plücker relations.

The non-negative (real) Grassmannian

$$
\operatorname{Gr}_{k, n}^{(\geqslant 0)}=\left\{w \in \operatorname{Gr}_{k, n}(\mathbb{R}): \Delta J(w) \geqslant 0, \forall J\right\}=\bigcup_{\mathcal{P}} \operatorname{Gr}_{\mathcal{P}}^{(>0)}
$$

has a stratification indexed by positroids $\mathcal{P} \subseteq\binom{[n]}{k}$, where

$$
\mathcal{P}(w)=\left\{J: \Delta_{J}(w)>0\right\}, \text { for } w \in \operatorname{Gr}_{k, n}^{(\geqslant 0)}
$$

Clusters for positroid strata

A cluster $\mathcal{C} \subset \mathcal{P}$ is a subset such that

$$
\operatorname{Gr}_{\mathcal{P}}^{(>0)} \rightarrow\left(\mathbb{R}_{>0}\right)^{\mathcal{C}}: w \mapsto\left(\Delta_{J}(w)\right)_{J \in \mathcal{C}}
$$

is a bijection (i.e. a chart).
[Postnikov] Clusters $\mathcal{C} \subset \mathcal{P}_{\pi}$ are left source labels $\left\{\mathrm{J}_{i}: i \in Q_{0}\right\}$ for some dimer model on a disc with strand permutation π.

[Postnikov, Mu-Sp] The positroid \mathcal{P}_{π} is the set of boundary values of perfect matchings for any dimer model with same strand permutation π. The necklace \mathcal{N}_{π} is 'minimal' in the positroid \mathcal{P}_{π}. Uniform (Grassmannian) case: if $\pi(i)=i+k$, then $\mathcal{P}_{\pi}=\binom{[n]}{k}$.

Perfect matchings on a quiver with faces

On G, a perfect matching μ is a collection of edges such that every node is incident with one edge in μ. Boundary value $\partial \mu$ is \{labels matched to a white node or unmatched to a black node\}

On Q, a perfect matching μ is a collection of arrows such that every face contains one arrow in μ.

Boundary values of matchings on Q

Boundary value $\partial \mu$ is the restriction of μ to the string of digons corresponding to boundary faces of Q. Identify $\partial \mu$ by $J \in\binom{[n]}{k}$ giving matched c-wise arrows. [Ex: it's the same k.]

$$
k=\#\{\mathrm{c}-\mathrm{w} \text { faces }\}-\#\{\text { ac-w faces }\}+\#\{\text { ac-w bdry arrows }\}
$$

Categorification I: circle algebra [JKS]

Define the circle algebra $C=C_{k, n}$ as the (complete) path algebra of a circle of n digons,

Centre $Z=\mathbb{C}[[t]]$ for $t=x y$ and C is a Z-order, in particular, C is free and fin. gen. over Z.

The category CM C of C-modules free and fin. gen. over Z is a Frobenius cluster category, in particular, stably 2-Calabi-Yau.
CM C contains 'rank 1 ' modules M_{J}, for all $J \in\binom{[n]}{k}$, with

- Z at each vertex,
- $\left(x_{j}, y_{j}\right)$ acting by $(t, 1)$, for $j \in J$, or $(1, t)$, for $j \notin J$.

Thus M_{J} are 'rank 1 matrix factorisations of t ' on each digon.
\exists cluster character $\Psi: C M C_{k, n} \rightarrow \mathbb{C}\left[\mathrm{Gr}_{k, n}\right]$ with $\Psi\left(M_{J}\right)=\Delta_{J}$.

Categorification II: dimer algebra [BKM]

For a dimer model Q on a disc, the dimer algebra $A=A_{Q}$ is the complete path algebra $\widehat{\mathbb{C Q}}$ modulo relations

$$
p_{\mathrm{a}}^{+}=p_{\mathrm{a}}^{-}
$$

for each internal arrow $a \in Q_{1}^{i n t}$. (Alt: it's a frozen Jacobi algebra).
A central element t acts, at any vertex, as the boundary path of any adjacent face (all equal by relations). Thus A is also a Z-order.

Prop [CKP] Consistency implies that $e_{j} A e_{i}=\langle$ paths i to $j\rangle \cong Z$, so projectives $A e_{i}$ are rank 1, for all idempotents $e_{i}, i \in Q_{0}$.

Categorification III: boundary algebra

Define boundary algebra $B=e A e$ from idempotent $e=\sum_{\text {bdry } i} e_{i}$.
Note: $B=C$ in uniform (Grassmannian) case.
Thm [CKP] B naturally has C as a subalgebra and the restriction CM $B \rightarrow$ CM C is a fully faithful embedding, that is,

CM B modules are a special class of $C M C$ modules.
Thm [Pres] eA $=\bigoplus_{i \in Q_{0}} e A e_{i}$ is a cluster tilting object in GP B (Gorenstein projective B-modules), which is a Frobenius cluster category contained in $\mathrm{CM} B$. Also $A=\operatorname{End}_{B}(e A)^{\mathrm{op}}$.
Prop [CKP] M_{J} is in CM B if and only if $J \in \mathcal{P}$, the positroid.
Proof by induction/restriction, i.e. $\mathrm{CM} A \rightarrow \mathrm{CM} B: N \mapsto e N$ and its adjoint $F: \mathrm{CM} B \rightarrow \mathrm{CM} A: M \mapsto \operatorname{Hom}_{B}(e A, M)$, we see that rank $1 M \in \mathrm{CM} B$ are the restrictions of rank $1 N \in \mathrm{CM} A$.

Categorification IV: matching modules [CKP]

Each matching μ gives a rank 1 module $N(\mu) \in \mathrm{CM} A$ with Z at each vertex and arrows a acting by t, if $a \in \mu$, or 1 , if $a \notin \mu$.

Thm All rank 1 modules have this form. Note: $e N(\mu) \cong M_{\partial \mu}$.

$$
e N(\mu)=M_{237}
$$

Thus $N(\mu)$ is a 'rank 1 matrix factorisation of t ' on each face of Q.

Projective matchings

Question: what are the boundary modules of the indecomposable projectives, i.e. the summands $e A e_{i}$ of $e A$, for $i \in Q_{0}$?

Projectives $A e_{i}$ are rank 1 , so $A e_{i} \cong N\left(p_{i}\right)$, for some matching p_{i} :
$a \in \mathrm{p}_{i} \Longleftrightarrow$ no minimal path from i to ha goes via $t a$

$$
\partial \mu=135
$$

Muller-Speyer's downstream matchings

[Mu-Sp] defined canonical matchings m_{i}, with $\partial \mathrm{m}_{i}=\mathrm{J}_{i}$, the left source label, by $a \in \mathrm{~m}_{i} \Longleftrightarrow i \in \mathrm{~d}$ 'stream wedge of a. Thm [CKP] $\mathrm{m}_{i}=\mathrm{p}_{i}$.

$$
\text { Cor } 1 e A e_{i}=M_{J_{i}}, \text { so } e A=\bigoplus_{i \in Q_{0}} M_{J_{i}}
$$

Cor $2 B=e A e=\bigoplus_{J \in \mathcal{N}_{\pi}} M_{J}$, that is the necklace \mathcal{N}_{π} is the boundary algebra B (in $\mathrm{CM} C$), whose rank 1 modules are the positroid \mathcal{P}_{π}.

Proof via projective resolution

Thm [CKP] Each matching module $N(\mu)$ in CM A has a projective resolution

$$
\bigoplus_{\substack{a \in \mu \\ i n t}} A e_{t a} \rightarrow \bigoplus_{a \notin \mu} A e_{h a} \rightarrow \bigoplus_{i \in Q_{0}} A e_{i} \rightarrow N(\mu)
$$

so we can compute the class $[N(\mu)] \in \mathrm{K}(\operatorname{Proj} A)$.
Thm $[\mathrm{CKP}]\left[N\left(\mathrm{~m}_{i}\right)\right]=\left[A e_{i}\right]$ and thus (with work) $N\left(\mathrm{~m}_{i}\right) \cong A e_{i}$.
Note: $[\mathrm{Mu}-\mathrm{Sp}]$ knows this combinatorially, but with indirect proof.
Question: is there a direct combinatorial proof that $m_{i}=p_{i}$, i.e.
$i \notin$ d'stream wedge of $a \Longleftrightarrow$ a min. path $i \rightarrow$ ha goes via ta ?

Matchings as cochains

For any quiver with faces Q, a perfect matching can be viewed as a function $\mu \in \mathbb{N}^{Q_{1}}$ s.t $d \mu=1$, on all faces $f \in Q_{2}$ and thus an element of the lattice $\mathbb{M}=\left\{\mu \in \mathbb{Z}^{Q_{1}}: d \mu \in c(\mathbb{Z})\right\}$.

$$
\begin{aligned}
& \mathbb{Z} \xrightarrow{\mathrm{C}} \mathbb{Z}^{Q_{0}} \xrightarrow{\mathrm{~d}} \mathbb{Z}^{Q_{1}} \xrightarrow{\mathrm{~d}} \mathbb{Z}^{Q_{2}}
\end{aligned}
$$

Top row is the reduced cochain complex: d is coboundary map, c is constant map, i is inclusion, deg is restriction of d .
Since Q is on a disc, both sequences are exact and so rk $\mathbb{M}=\left|Q_{0}\right|$ and, in fact, $\left\{m_{i}: i \in Q_{0}\right\}$ is a basis [Mu-Sp].

Partition functions and the network torus

The partition functions of the dimer model are

$$
\mathcal{Z}_{J}=\sum_{\mu: \partial \mu=J} z^{\mu}, \quad \text { for each boundary value } J \in\binom{[n]}{k}
$$

considered as formal Laurent polynomials (i.e. $z^{m} z^{n}=z^{m+n}$) or functions on the torus \mathbb{T} whose character lattice is \mathbb{M}.
[Can think \mathbb{T} is parametrised by 'edge weights modulo gauge'.]
Thm [Post'v,Mu-Sp] The map $\mathrm{n}: \mathbb{T} \rightarrow \widehat{\mathrm{Gr}}_{k, n}$ given algebraically by

$$
\mathrm{n}^{*}: \mathbb{C}\left[\mathrm{Gr}_{k, n}\right] \rightarrow \mathbb{C}[\mathbb{T}]: \Delta_{J} \mapsto \mathcal{Z}_{J}
$$

parametrises an open torus inside the associated positroid variety.

Categorified partition function

Regarding a module $N \in \mathrm{CM} A$ as a quiver representation $\left(V_{i}, \phi_{a}\right)$, there is a natural invariant $\nu: \mathrm{K}(\mathrm{CM} A) \rightarrow \mathbb{M}:[N] \mapsto \nu_{N}$ given by $\nu_{N}(a)=\operatorname{dim} \operatorname{coker} \phi_{a}$ and such that $\operatorname{deg} \nu_{N}=\mathrm{rk} N\left(=\mathrm{rk} V_{i}\right)$.

For $M \in C M B$, define the module partition function, generalising $\mathcal{Z}_{J}=\mathcal{Z}_{M_{J}}$,

$$
\mathcal{Z}_{M}=\sum_{\substack{N \leqslant F M \\ N N=M}} z^{\nu_{N}}
$$

where $F: M \mapsto \operatorname{Hom}_{B}(e A, M)$ is adjoint to restriction $N \mapsto e N$. Note: families of N with fixed ν_{N} are counted by Euler char.

Conj/Thm [JKS3, in progress] $\mathcal{Z}_{M}=\mathrm{n}^{*} \Psi_{M}$

Some references

[BKM] K. Baur, A. King, B.R. Marsh, Dimer models and cluster categories of Grassmannians, Proc. Lond. Math. Soc. 113 (2016) 213-260 (arXiv:1309.6524)
[CKP] I. Canakci, A. King, M. Pressland, Perfect matching modules, ..., arXiv:2106.15924
[JKS] B.T. Jensen, A. King, X. Su, A categorification of Grassmannian cluster algebras, Proc. L.M.S. 113 (2016) 185-212 (arXiv:1309.7301)
[Mu-Sp] G. Muller, D.E. Speyer, The twist for positroid varieties, Proc. L.M.S. 115 (2017) 1014-1071 (arXiv:1606.08383)
[Pres] M. Pressland, Calabi-Yau properties of Postnikov diagrams, arXiv:1912.12475
[Scott] J. Scott, Grassmannians and cluster algebras, Proc. Lond. Math. Soc. 92 (2006) 345-380 (arXiv:math/0311148)

