Categorification of perfect matchings

Alastair King, Bath

with İ. Çanakçı & M. Pressland [CKP]

and with B.T. Jensen & X. Su

Hamburg, Jan 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Enriching/explaining combinatorics by representation theory

... for example: replacing cluster algebras by cluster categories... but not: higher representation theory [Khovanov, Rouqier, ...]

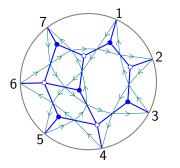
(replacing vector spaces & linear maps by categories & functors)

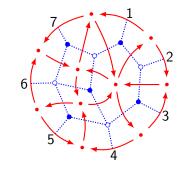
... in this talk: interpreting *dimer models and perfect matchings* as *quivers with faces and their representations*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Context: consistent dimer models on a disc

dual



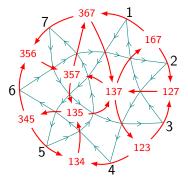


planar bipartite graph G + Postnikov conditions on strands (zig-zag paths) quiver with faces, i.e. oriented cycles, $Q = (Q_0, Q_1, Q_2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Combinatorics: left source labelling of quiver vertices

[Postnikov, Scott] Label each quiver vertex $i \in Q_0$ by the *sources* of the strands for which *i* is on the *left* of the strand.



Ex: Labels J_i are in $\binom{[n]}{k} = \{k \text{-subsets of } \{1, \ldots, n\}\}$, for fixed k, the average increment (mod n) of the strand permutation π . Here $\pi = (246)(1573)$, with increments 2, 2, 3, 4, 2, 3, 5. *Hint:* Consider the *necklace* \mathcal{N}_{π} of boundary labels.

Geometry: Grassmannians and positroids

The Grassmannian $\operatorname{Gr}_{k,n}$ of (co)dimension k subspaces of \mathbb{C}^n has homogeneous coordinate ring

$$\mathbb{C}[\mathsf{Gr}_{k,n}] = \mathbb{C}[\mathsf{Mat}_{k,n}]^{\mathsf{SL}_k}, \qquad \text{i.e. } \begin{array}{l} \mathsf{SL}_k \text{-invariant functions} \\ \mathsf{of } k \times n \text{ matrices,} \end{array}$$

generated by Plücker coordinates (minors) $\Delta_J : J \in {[n] \choose k}$, satisfying (quadratic) Plücker relations.

The non-negative (real) Grassmannian

$$\mathsf{Gr}_{k,n}^{(\geq 0)} = \{ w \in \mathsf{Gr}_{k,n}(\mathbb{R}) : \Delta_J(w) \ge 0, \ \forall J \} = \bigcup_{\mathcal{P}} \mathsf{Gr}_{\mathcal{P}}^{(>0)}$$

has a stratification indexed by *positroids* $\mathcal{P} \subseteq {[n] \choose k}$, where

$$\mathcal{P}(w) = \{J : \Delta_J(w) > 0\}, \text{ for } w \in \mathsf{Gr}_{k,n}^{(\geqslant 0)}$$

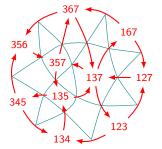
Clusters for positroid strata

A *cluster* $\mathcal{C} \subset \mathcal{P}$ is a subset such that

$$\mathsf{Gr}_{\mathcal{P}}^{(>0)} o (\mathbb{R}_{>0})^{\mathcal{C}} \colon w \mapsto (\Delta_J(w))_{J \in \mathcal{C}}$$

is a bijection (i.e. a chart).

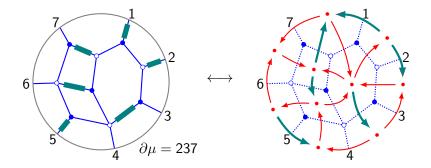
[Postnikov] Clusters $C \subset P_{\pi}$ are left source labels $\{J_i : i \in Q_0\}$ for some dimer model on a disc with strand permutation π .



[Postnikov, Mu-Sp] The positroid \mathcal{P}_{π} is the set of *boundary values* of perfect matchings for any dimer model with same strand permutation π . The necklace \mathcal{N}_{π} is 'minimal' in the positroid \mathcal{P}_{π} . Uniform (Grassmannian) case: if $\pi(i) = i + k$, then $\mathcal{P}_{\pi} = {[n] \choose k}$.

Perfect matchings on a quiver with faces

On G, a *perfect matching* μ is a collection of edges such that every node is incident with one edge in μ . Boundary value $\partial \mu$ is {labels matched to a white node or unmatched to a black node}



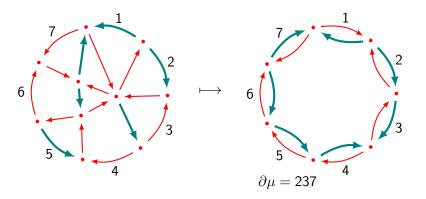
On Q, a *perfect matching* μ is a collection of arrows such that every face contains one arrow in μ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Boundary values of matchings on Q

Boundary value $\partial \mu$ is the restriction of μ to the string of digons corresponding to boundary faces of Q. Identify $\partial \mu$ by $J \in {\binom{[n]}{k}}$ giving matched c-wise arrows. [*Ex:* it's the same *k*.]

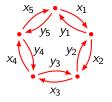
 $k = #{c-w faces} - #{ac-w faces} + #{ac-w bdry arrows}$



Categorification I: circle algebra [JKS]

Define the *circle algebra* $C = C_{k,n}$ as the (complete) path algebra of a circle of *n* digons, modulo relations xy = yx, $y^k = x^{n-k}$.

Centre $Z = \mathbb{C}[[t]]$ for t = xy and C is a Z-order, in particular, C is free and fin. gen. over Z.



The category CM C of C-modules free and fin. gen. over Z is a Frobenius cluster category, in particular, stably 2-Calabi-Yau.

CM C contains 'rank 1' modules M_J , for all $J \in {\binom{[n]}{k}}$, with

- Z at each vertex,
- (x_j, y_j) acting by (t, 1), for $j \in J$, or (1, t), for $j \notin J$.

Thus M_J are 'rank 1 matrix factorisations of t' on each digon. \exists cluster character Ψ : CM $C_{k,n} \to \mathbb{C}[Gr_{k,n}]$ with $\Psi(M_J) = \Delta_J$.

Categorification II: dimer algebra [BKM]

For a dimer model Q on a disc, the *dimer algebra* $A = A_Q$ is the complete path algebra $\widehat{\mathbb{C}Q}$ modulo relations

$$p_{a}^{+} = p_{a}^{-}$$
 p_{a}^{+} a p_{a}^{-} p_{a}^{-}

for each internal arrow $a \in Q_1^{int}$. (Alt: it's a frozen Jacobi algebra).

A central element *t* acts, at any vertex, as the boundary path of any adjacent face (all equal by relations). Thus *A* is also a *Z*-order. *Prop* [CKP] Consistency implies that $e_jAe_i = \langle \text{paths } i \text{ to } j \rangle \cong Z$, so projectives Ae_i are rank 1, for all idempotents e_i , $i \in Q_0$.

Categorification III: boundary algebra

Define *boundary algebra* B = eAe from idempotent $e = \sum_{bdry i} e_i$. Note: B = C in uniform (Grassmannian) case.

Thm [CKP] B naturally has C as a subalgebra and the restriction $CM B \rightarrow CM C$ is a fully faithful embedding, that is,

CMB modules are a special class of CMC modules.

Thm [Pres] $eA = \bigoplus_{i \in Q_0} eAe_i$ is a cluster tilting object in GP *B* (Gorenstein projective *B*-modules), which is a Frobenius cluster category contained in CM *B*. Also $A = \operatorname{End}_B(eA)^{\operatorname{op}}$.

Prop [CKP] M_J is in CM B if and only if $J \in \mathcal{P}$, the positroid.

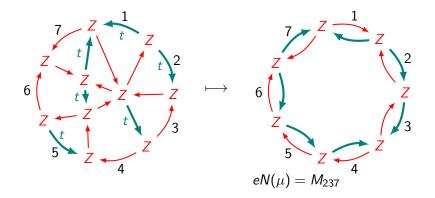
Proof by induction/restriction, i.e. $CM A \rightarrow CM B: N \mapsto eN$ and its adjoint $F: CM B \rightarrow CM A: M \mapsto Hom_B(eA, M)$, we see that

rank 1 $M \in CM B$ are the restrictions of rank 1 $N \in CM A$.

Categorification IV: matching modules [CKP]

Each matching μ gives a rank 1 module $N(\mu) \in CMA$ with Z at each vertex and arrows a acting by t, if $a \in \mu$, or 1, if $a \notin \mu$.

Thm All rank 1 modules have this form. Note: $eN(\mu) \cong M_{\partial\mu}$.



Thus $N(\mu)$ is a 'rank 1 matrix factorisation of t' on each face of Q.

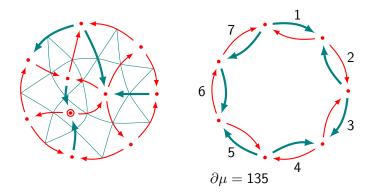
・ロト・日本・日本・日本・日本・日本

Projective matchings

Question: what are the boundary modules of the indecomposable projectives, i.e. the summands eAe_i of eA, for $i \in Q_0$?

Projectives Ae_i are rank 1, so $Ae_i \cong N(p_i)$, for some matching p_i :

 $a \in p_i \iff$ no minimal path from *i* to *ha* goes via *ta*



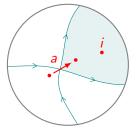
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Muller-Speyer's downstream matchings

[Mu-Sp] defined canonical matchings m_i , with $\partial m_i = J_i$, the left source label, by

$$a \in \mathfrak{m}_i \iff i \in \mathsf{d}$$
'stream wedge of a .

Thm [CKP]
$$m_i = p_i$$
.
Cor 1 $eAe_i = M_{J_i}$, so $eA = \bigoplus_{i \in Q_0} M_{J_i}$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cor 2 $B = eAe = \bigoplus_{J \in \mathcal{N}_{\pi}} M_J$, that is

the necklace \mathcal{N}_{π} is the boundary algebra *B* (in CM *C*), whose rank 1 modules are the positroid \mathcal{P}_{π} .

Proof via projective resolution

Thm [CKP] Each matching module $N(\mu)$ in CM A has a projective resolution

$$igoplus_{m{a}\in\mu}{Ae_{ta}} o igoplus_{m{a}
otint}{Ae_{ha}} o igoplus_{i\in Q_0}{Ae_i} o {\sf N}(\mu),$$

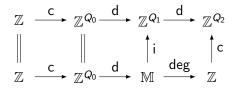
so we can compute the class $[N(\mu)] \in K(\operatorname{Proj} A)$.

Thm [CKP] $[N(\mathfrak{m}_i)] = [Ae_i]$ and thus (with work) $N(\mathfrak{m}_i) \cong Ae_i$. Note: [Mu-Sp] knows this combinatorially, but with indirect proof.

Question: is there a direct combinatorial proof that $m_i = p_i$, i.e. $i \notin d$ 'stream wedge of $a \iff$ a min. path $i \rightarrow ha$ goes via ta?

Matchings as cochains

For any quiver with faces Q, a *perfect matching* can be viewed as a function $\mu \in \mathbb{N}^{Q_1}$ s.t $d\mu = 1$, on all faces $f \in Q_2$ and thus an element of the lattice $\mathbb{M} = \{\mu \in \mathbb{Z}^{Q_1} : d\mu \in c(\mathbb{Z})\}.$



Top row is the reduced cochain complex: d is coboundary map, c is constant map, i is inclusion, deg is restriction of d.

Since Q is on a disc, both sequences are exact and so $rk \mathbb{M} = |Q_0|$ and, in fact, $\{m_i : i \in Q_0\}$ is a basis [Mu-Sp].

Partition functions and the network torus

The *partition functions* of the dimer model are

$$\mathcal{Z}_J = \sum_{\mu: \partial \mu = J} z^\mu, \hspace{1em}$$
 for each boundary value $J \in {[n] \choose k},$

considered as formal Laurent polynomials (i.e. $z^m z^n = z^{m+n}$) or functions on the torus \mathbb{T} whose character lattice is \mathbb{M} . [Can think \mathbb{T} is parametrised by 'edge weights modulo gauge'.]

Thm [Post'v,Mu-Sp] The map n: $\mathbb{T} \to \widehat{\operatorname{Gr}}_{k,n}$ given algebraically by

$$n^* \colon \mathbb{C}[Gr_{k,n}] \to \mathbb{C}[\mathbb{T}] \colon \Delta_J \mapsto \mathcal{Z}_J$$

parametrises an open torus inside the associated positroid variety.

Categorified partition function

Regarding a module $N \in CM A$ as a quiver representation (V_i, ϕ_a) , there is a natural invariant $\nu \colon K(CM A) \to \mathbb{M} \colon [N] \mapsto \nu_N$ given by $\nu_N(a) = \dim \operatorname{coker} \phi_a$ and such that $\deg \nu_N = \operatorname{rk} N \ (= \operatorname{rk}_Z V_i)$.

For $M \in CM B$, define the *module partition function*, generalising $\mathcal{Z}_J = \mathcal{Z}_{M_J}$,

$$\mathcal{Z}_M = \sum_{\substack{N \leqslant FM \ eN = M}} z^{
u_N},$$

where $F: M \mapsto \text{Hom}_B(eA, M)$ is adjoint to restriction $N \mapsto eN$. Note: families of N with fixed ν_N are counted by Euler char.

Conj/Thm [JKS3, in progress] $\mathcal{Z}_M = n^* \Psi_M$

Some references

[BKM] K. Baur, A. King, B.R. Marsh, *Dimer models and cluster categories of Grassmannians*, Proc. Lond. Math. Soc. **113** (2016) 213–260 (arXiv:1309.6524)

[CKP] I. Canakci, A. King, M. Pressland, *Perfect matching modules*, ..., arXiv:2106.15924

[JKS] B.T. Jensen, A. King, X. Su, *A categorification of Grassmannian cluster algebras*, Proc. L.M.S. **113** (2016) 185–212 (arXiv:1309.7301)

[Mu-Sp] G. Muller, D.E. Speyer, *The twist for positroid varieties*, Proc. L.M.S. **115** (2017) 1014–1071 (arXiv:1606.08383)

[Pres] M. Pressland, *Calabi–Yau properties of Postnikov diagrams*, arXiv:1912.12475

[Scott] J. Scott, *Grassmannians and cluster algebras*, Proc. Lond. Math. Soc. **92** (2006) 345–380 (arXiv:math/0311148)